

# Networked Sensors for the Objective Force

"No Place To Hide"

John Eicke

U.S. Army Research Laboratory

# **Objective**





Demonstrate a family of low cost sensors utilizing a wide range of sensor types, to enable overarching situational awareness & provide a common operational picture across all echelons of the future Army.

Networks of ubiquitous, low cost sensors can "see" where we currently cannot!

# Networked Sensors for the Objective Force ATD

R

- Approved ATD in 2002
- 4 year duration
- CECOM-NVESD Lead ARL supporting
- Aimed at insertion into FCS Block II
- Components:
  - UGS
  - UAV mounted sensors
  - Robot mounted sensors



# What's the Concept?





## The network is the sensor!

# What Does This Mean to the Warfighter?

- **High fidelity** sensor information for
  - Targeting
  - Threat detection
  - Battle damage assessment



- Affordable, organic sensing at the small unit & soldier level
- **Multi-mission** target & threat information for a wide range of needs
- **Integrated** with other sensors to provide a more complete picture of the battlespace

Warfighter will "see" where he currently cannot

#### **Acoustic / Seismic Sensors**

A

- 360°, NLOS monitoring
- Provides LOB to targets
- Multiple nodes locate targets
- Detect & ID
  - Vehicles
  - Helicopters
  - Artillery, mortar, gunfire
- Excellent cueing for imagers

- > Robust target localization
- > Target identification
- > Noise reduction





# **Magnetic Sensors**



**Magnetic Sensor Sensitivity** 

- Very low cost
- 360°, NLOS monitoring
- All weather
- Detect
  - Vehicles
  - Small arms
- Excellent tripwire sensor to cue other sensors



#### **Key Issues**

- > Immature
- > Noise reduction
- > Low cost implementations

 $H_{x}$ 

#### **IR Sensors**

- Low cost imager
- Low power / size
  - 90 grams (including optic)
  - 600 mW @ 3.5V
- Excellent target identification





- > Robust automatic target recognition
- > Lower cost to be driven by commercial demand

# **Moving Target Indicator (MTI) Radar Sensor**



360°, NLOS monitoring

Low cost

- Small, low power
- Detection of moving targets based on Doppler

Target range out to > 500m





#### **Key Issues**

- > Immature
- > Power concerns
- > Cost



Concepts based on Army proximity fuzes

# RF Energy Sensor

AL

- Low cost
- Non-line of sight
- Small, low power
- Detects unintentional RF emissions
  - Engine noise
  - Electronics
- Detect & classify intentional RF signals





- > Immature
- > Cost
- Wide frequency response needed

#### **Sensor Fusion**











#### **Communications**



- Key barrier to implementation of UGS networks
- Two types of comm links required
  - Local short haul radios Blue

Long haul radios – Orange

- > Bandwidth constraints
- Robust operation with node failures
- Mobility adds complexity
- > Information protection

#### **Radios**

- Short Haul inter-cluster "Blue"
  - Short range 400 meters
  - Low bandwidth <10Khz</li>
  - Self-configuring, energy-aware
  - ComSec, LPI/LPD, anti-jam
  - Receiver energy can dominate power budget!
- Long Haul cluster to C2 network "Orange"
  - Selectable BW 1 khz data to video
  - Long range 10 km or more
  - ComSec, LPI/LPD, anti-jam
- Must operate on noisy channels



# **Self-Configuring Routing & Control**



- Linked Cluster Ad Hoc Routing Algorithm
  - Network self-organizes without prior knowledge of network
  - Adapts to mobility, channel effects, node failures
  - Energy-aware routing & reconfiguration

#### Control Architecture

- Autonomously establishes & maintains the sensor network
- Supports range of operational scenarios
- Enables low-overhead security



Modified Ephremides Linked Cluster Routing Algorithm

#### Tradeoffs: "The 3 B's"





Node performance tradeoffs are complex requiring careful consideration based on specific applications

# **Node Emplacement**

A

- Hand emplaced
- Artillery / mortar
- Aircraft / helicopters
- Mine dispensers
- Autonomous platforms
  - Small robots
  - Small UAVs



Small, autonomous platforms will allow sensors to position themselves to optimize sensing and/or communications







# **Networked Sensor Applications**





Perimeter Defense



Targeting



Personnel Detection

**Networked Sensors for Indirect Fire** 

**Applications** 



**Time Critical Targets** 





Hostile Artillery
Location



Situational Awareness

# **Benefits of the Approach**



- Provide warfighters with <u>organic</u> capabilities down to small unit level
- Internetted, multi-sensor approach insures robust, reliable target information
- Range of employment mechanisms (hand, air, munitions, robots) enables diverse uses
- Range of low cost technologies will allow their rapid re-use to meet new requirements

#### **The Bottom Line**



- Army & other services are actively pursuing programs
- Many key technologies already exist
- Key challenges remain
  - Sensor & data fusion
  - Communications

Not an <u>evolution</u>, but . . . a <u>revolution</u> in battlefield sensing